skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Donnan, Fergus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the 3.4 − 4.4 μm fundamental rovibrational band of H3+, a key tracer of the ionization of the molecular interstellar medium (ISM), in a sample of 12 local (d < 400 Mpc) (ultra)luminous infrared galaxies ((U)LIRGs) observed with JWST/NIRSpec. TheP,Q, andRbranches of the band are detected in 13 out of 20 analyzed regions within these (U)LIRGs, which increases the number of extragalactic H3+detections by a factor of 6. For the first time in the ISM, the H3+band is observed in emission; we detect this emission in three regions. In the remaining ten regions, the band is seen in absorption. The absorptions are produced toward the 3.4 − 4.4 μm hot dust continuum rather than toward the stellar continuum, indicating that they likely originate in clouds associated with the dust continuum source. The H3+band is undetected in Seyfert-like (U)LIRGs where the mildly obscured X-ray radiation from the active galactic nuclei might limit the abundance of this molecule. For the detections, the H3+abundances,N(H3+)/NH = (0.5 − 5.5)×10−7, imply relatively high ionization rates,ζH2, of between 3 × 10−16and > 4 × 10−15s−1, which are likely associated with high-energy cosmic rays. In half of the targets, the absorptions are blueshifted by 50–180 km s−1, which is lower than the molecular outflow velocities measured using other tracers such as OH 119 μm or rotational CO lines. This suggests that H3+traces gas close to the outflow-launching sites before it has been fully accelerated. We used nonlocal thermodynamic equilibrium models to investigate the physical conditions of these clouds. In seven out of ten objects, the H3+excitation is consistent with inelastic collisions with H2in warm translucent molecular clouds (Tkin ∼ 250–500 K andn(H2) ∼102 − 3cm−3). In three objects, dominant infrared pumping excitation is required to explain the absorptions from the (3,0) and (2,1) levels of H3+detected for the first time in the ISM. 
    more » « less
  2. Abstract The AGN STORM 2 campaign is a large, multiwavelength reverberation mapping project designed to trace out the structure of Mrk 817 from the inner accretion disk to the broad emission line region and out to the dusty torus. As part of this campaign, Swift performed daily monitoring of Mrk 817 for approximately 15 months, obtaining observations in X-rays and six UV/optical filters. The X-ray monitoring shows that Mrk 817 was in a significantly fainter state than in previous observations, with only a brief flare where it reached prior flux levels. The X-ray spectrum is heavily obscured. The UV/optical light curves show significant variability throughout the campaign and are well correlated with one another, but uncorrelated with the X-rays. Combining the Swift UV/optical light curves with Hubble Space Telescope UV continuum light curves, we measure interband continuum lags,τ(λ), that increase with increasing wavelength roughly followingτ(λ) ∝λ4/3, the dependence expected for a geometrically thin, optically thick, centrally illuminated disk. Modeling of the light curves reveals a period at the beginning of the campaign where the response of the continuum is suppressed compared to later in the light curve—the light curves are not simple shifted and scaled versions of each other. The interval of suppressed response corresponds to a period of high UV line and X-ray absorption, and reduced emission line variability amplitudes. We suggest that this indicates a significant contribution to the continuum from the broad-line region gas that sees an absorbed ionizing continuum. 
    more » « less